2020-01-07
1. Zhang, Y., et al., Hydrogen Therapy in Cardiovascular and Metabolic Diseases: from Bench to Bedside. Cell Physiol Biochem, 2018. 47(1): p. 1-10.
2. Sano, M., et al., Promising novel therapy with hydrogen gas for emergency and critical care medicine. Acute Med Surg, 2018. 5(2): p. 113-118.
3. Li, H.M., et al., The transfer of hydrogen from inert gas to therapeutic gas. Med Gas Res, 2017. 7(4): p. 265-272.
4. Ohta, S., Molecular hydrogen as a preventive and therapeutic medical gas: initiation, development and potential of hydrogen medicine. Pharmacol Ther, 2014.
5. Ichihara, M., et al., Beneficial biological effects and the underlying mechanisms of molecular hydrogen – comprehensive review of 321 original articles. Med Gas Res, 2015. 5: p. 12.
6. Ohsawa, I., et al., Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med, 2007. 13(6): p. 688-694.
7. Nakao, A., et al., Effectiveness of Hydrogen Rich Water on Antioxidant Status of Subjects with Potential Metabolic Syndrome-An Open Label Pilot Study. Journal of Clinical Biochemistry and Nutrition, 2010. 46(2): p. 140-149.
8. Trivic, T., et al., Drinking hydrogen-rich water for 4 weeks positively affects serum antioxidant enzymes in healthy men: a pilot study. Current Topics in Nutraceutical Research, 2017. 15(1): p. 45-48.
9. Ishibashi, T., et al., Consumption of water containing a high concentration of molecular hydrogen reduces oxidative stress and disease activity in patients with rheumatoid arthritis: an open-label pilot study. Medical Gas Research, 2012. 2(1): p. 27.
10. Nicolson, G.L., et al., Clinical Effects of Hydrogen Administration: From Animal and Human Diseases to Exercise Medicine. International Journal of Clinical Medicine, 2016. 7(1).
11. Ohta, S., Molecular hydrogen as a novel antioxidant: overview of the advantages of hydrogen for medical applications. Methods Enzymol, 2015. 555: p. 289-317.
12. Yuan, J., et al., Hydrogen-rich water attenuates oxidative stress in rats with traumatic brain injury via Nrf2 pathway. J Surg Res, 2018. 228: p. 238-246.
13. Swamy, S.M., N.S. Rajasekaran, and V.J. Thannickal, Nuclear Factor-Erythroid-2-Related Factor 2 in Aging and Lung Fibrosis. Am J Pathol, 2016. 186(7): p. 1712-23.
14. Shelton, P. and A.K. Jaiswal, The transcription factor NF-E2-related factor 2 (Nrf2): a protooncogene? FASEB J, 2013. 27(2): p. 414-23.
15. Korovljev, D., et al., Molecular hydrogen affects body composition, metabolic profiles, and mitochondrial function in middle-aged overweight women. Ir J Med Sci, 2017.
16. Kamimura, N., et al., Molecular Hydrogen Improves Obesity and Diabetes by Inducing Hepatic FGF21 and Stimulating Energy Metabolism in db/db Mice. Obesity, 2011.
17. Wang, H., et al., Hydrogen-Rich Saline Activated Autophagy via HIF-1alpha Pathways in Neuropathic Pain Model. Biomed Res Int, 2018. 2018: p. 4670834.
18. Ma, H., et al., [Hydrogen-rich saline attenuates hyperalgesia and reduces cytokines in rats with post-herpetic neuralgia via activating autophagy]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi, 2017. 33(2): p. 155-158.
19. Wu, X., et al., Hydrogen exerts neuroprotective effects on OGD/R damaged neurons in rat hippocampal by protecting mitochondrial function via regulating mitophagy mediated by PINK1/Parkin signaling pathway. Brain Res, 2018.
20. Gao, Y., et al., Hydrogen Gas Attenuates Myocardial Ischemia Reperfusion Injury Independent of Postconditioning in Rats by Attenuating Endoplasmic Reticulum Stress-Induced Autophagy. Cell Physiol Biochem, 2017. 43(4): p. 1503-1514.
21. Tamura, T., et al., Efficacy of inhaled HYdrogen on neurological outcome following BRain Ischemia During post-cardiac arrest care (HYBRID II trial): study protocol for a randomized controlled trial. Trials, 2017. 18(1): p. 488.
22. Ono, H., et al., Hydrogen Gas Inhalation Treatment in Acute Cerebral Infarction: A Randomized Controlled Clinical Study on Safety and Neuroprotection. J Stroke Cerebrovasc Dis, 2017.
23. Yoritaka, A., et al., Pilot study of H(2) therapy in Parkinson’s disease: A randomized double-blind placebo-controlled trial. Movement Disorders, 2013.
24. Nishimaki, K., et al., Effects of molecular hydrogen assessed by an animal model and a randomized clinical study on mild cognitive impairment. Curr Alzheimer Res, 2017.
25. Mizuno, K., et al., Hydrogen-rich water for improvements of mood, anxiety, and autonomic nerve function in daily life. Med Gas Res, 2017. 7(4): p. 247-255.
26. Gao, Q., et al., Molecular hydrogen increases resilience to stress in mice. Sci Rep, 2017. 7(1): p. 9625.
27. Guo, Q., et al., Hydrogen-Rich Water Ameliorates Autistic-Like Behavioral Abnormalities in Valproic Acid-Treated Adolescent Mice Offspring. Front Behav Neurosci, 2018. 12: p. 170.
28. Kuroki, C., et al., Neuroprotective Effects of Hydrogen Gas on Brain in Ischemia-Reperfusion Model: A P-31-Nmr Study. Journal of Physiological Sciences, 2009. 59: p. 371-371.
29. Cai, J.M., et al., Neuroprotective effects of hydrogen saline in neonatal hypoxia-ischemia rat model. Brain Res, 2009. 1256: p. 129-137.
30. Kuroki, C., et al., Neuroprotective effects of hydrogen gas on brain in hypoxic stress model and ischemia-reperfusion model: A P-31 NMR study. Neuroscience Research, 2008. 61: p. S274-S274.
31. Cai, J., et al., Hydrogen therapy reduces apoptosis in neonatal hypoxia-ischemia rat model. Neurosci Lett, 2008. 441(2): p. 167-172.
32. Matchett, G.A., et al., Hydrogen gas is ineffective in moderate and severe neonatal hypoxia-ischemia rat models. Brain Research, 2009. 1259: p. 90-7.【詳細】